A. DREIZLER

Diagnostics Laser

1/2

Samedi 29 Mai 2010, 16h30 - 18h00
Experiments in Turbulent Combustion

Andreas Dreizler
Institute Reactive Flows and Diagnostics
Mechanical Engineering
TU Darmstadt
Germany

Reaktive Strömungen + Messtechnik
Motivation

• 90% of primary energy conversion by combustion
• Global agreement on reduction of green-house gases and pollutants
 ➢ Improved combustion technology
• More detailed understanding of physical-chemical processes in combustion processes
 – Experiments
 – Detailed modeling
 – Numerical simulation
• Focus here is on gaseous combustion
Interplay between experiments and simulation

Experiments
- Design of experiments
- Analysis of systematic errors

Simulation
- Design
- Control

Fundamentals, Model-development, Validation

Practical combustion process
Interplay between experiments and simulation

Experiments
- Design of experiments
- Analysis of systematic errors
- Practical combustion process

Simulation
- Design
- Control
- Verification

Fundamentals, Model-development, Validation

Numerics
- Data-postprocessing
Focus in this lecture

- Experiments for improved understanding and validation purposes
- (Interconnection of experiments and numerical simulation)
- Topics
 - Benchmark flames
 - Measurands of interest and laser-based methods
 - Selected applications
Validation numerical simulation

- Numerical simulations are based on models
- Combustion LES requires
 - Subgrid-scale model
 - Combustion model
 - ...

→ Comprehensive and reliable data sets for validation and improved understanding are a prerequisite

→ (Quantitative) Experiments in Combustion
 - Gaseous flames
 - Laser-based diagnostics
Contents: Experiments in Combustion

• Bench mark flames
 – Requirements for optical diagnostics
 – Inflow and boundary conditions
 – Bench mark configurations and flame sequences

• Laser diagnostic methods
 – Flow field diagnostics
 – Scalar field diagnostics
 – Combined flow/ scalar field diagnostics

• Applications/ diagnostics at high repetition rates

• Comparison of experiments with LES-quantities
Bench mark flames/ configurations

- Requirements for optical diagnostics
 - Optical access from three sides to enable application of different laser diagnostics
 - Nozzle exit accessible, such that radial profiles can be recorded as close as possible (~1mm)
 - Optical access to interior of nozzle (if possible)
 - In case of atmospheric flames shielding from the lab (co-flowing air)
 - Decoupling of the flame from the exhaust gas system
 - Fuel composition that does not interfere with the laser/detection wavelength
Bench mark flames/ configurations

- Requirements for validation of numerical simulations
 - Known or measurable inflow conditions
 - Well-defined boundary conditions
 - Parametric variation ("flame sequence") of key-quantities such as
 - Fuel composition, equivalence ratio
 - Reynolds-number, thermal load
 - Swirl intensity
 - Pressure
 - Geometry
Bench mark configurations

• 3 Examples of bench mark flames
• 1 Example of optically accessible IC-engine

• Example 1: Turbulent opposed jet flame
Turbulent opposed jet flame

- Two identical opposed nozzles, D=H=30mm
- Turbulence intensity ~0.1 at nozzle exit, enhanced by tgp
- N₂ coflow prevents ambient air mixing
- Access laser beam along burner axis → no beam steering
- Horizontal stagnation plane → symmetric influence of gravity
- Water cooling for stable long term operation
- Parametric variation
 - Fuel composition
 - Reynolds-No. (stable to extinction)
Turbulent opposed jet flame

- Variation of fuel and Re

<table>
<thead>
<tr>
<th>Re_{air}</th>
<th>a_m(1/s)</th>
<th>$\Phi = 3.18$</th>
<th>$\Phi = 2.0$</th>
<th>$\Phi = 1.6$</th>
<th>$\Phi = 1.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3300</td>
<td>115</td>
<td>TOJ1A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td>158</td>
<td>TOJ1B</td>
<td>TOJ2B</td>
<td>TOJ3B</td>
<td>TOJ4B</td>
</tr>
<tr>
<td>5000</td>
<td>175</td>
<td>TOJ1C</td>
<td>TOJ2C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6650</td>
<td>235</td>
<td>TOJ1D</td>
<td>TOJ2D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7200</td>
<td>255</td>
<td></td>
<td></td>
<td>TOJ2E</td>
<td></td>
</tr>
</tbody>
</table>
Turbulent opposed jet flame

- Flow field quantities for TOJ2D

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk velocity W_b</td>
<td>3.4m/s</td>
</tr>
<tr>
<td>Turbulent Re-number Re_t</td>
<td>90</td>
</tr>
<tr>
<td>Bulk strain rate $a_b = (-W_{b, o} + W_{b, F})/H$</td>
<td>231s $^{-1}$</td>
</tr>
<tr>
<td>Residence time in mixing layers $t_{res} = a_b^{-1}$</td>
<td>4.3ms</td>
</tr>
<tr>
<td>Large-eddy turnover time $t_{ov} = l_0/(2k)^{1/2}$</td>
<td>16.2ms</td>
</tr>
<tr>
<td>Integral time scale T at nozzle exit</td>
<td>1.6ms</td>
</tr>
<tr>
<td>Integral length scale l_0 at nozzle exit</td>
<td>4.7mm</td>
</tr>
<tr>
<td>Kolmogorov length scale η_K at nozzle exit</td>
<td>0.16mm</td>
</tr>
<tr>
<td>Batchelor scale at nozzle exit η_c</td>
<td>0.18mm</td>
</tr>
</tbody>
</table>
Turbulent opposed jet flame

- Visual impression

Time-averaged flame luminosity

Transient flame luminosity

@ 500 Hz
Turbulent opposed jet flame

- Extinction monitored by temporally resolved chemiluminescence, 10 kHz

Time=-451300usec
Bench mark configurations

• Example 2: Swirling lean premixed flame
Swirling lean premixed flame

- Nozzle closer to practical applications
- Need for reliable data sets of premixed flames
- Parametric variation of
 - Reynolds number
 - Swirl number
 - Equivalence ratio
Swirling lean premixed flame

- **Swirl number**

 \[
 S = \frac{G_\theta}{\frac{d}{2} \cdot G_x}
 \]

 - \(G_\theta\) Axial flux of tangential momentum
 - \(G_x\) Axial flux of axial momentum

- **Variation by moveable block** *(motor driven, gear reduction)*
Swirling lean premixed flame

- **Parametric variation: Re**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PSF-30</th>
<th>PSF-90</th>
<th>PSF-150</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{0,\text{th}}$</td>
<td>-</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>P [kW]</td>
<td>30</td>
<td>90</td>
<td>150</td>
</tr>
<tr>
<td>ϕ [-]</td>
<td>0.833</td>
<td>0.833</td>
<td>1.0</td>
</tr>
<tr>
<td>Q_{gas} [m$_3$/h]</td>
<td>3.02</td>
<td>9.06</td>
<td>15.1</td>
</tr>
<tr>
<td>Q_{air} [m$_3$/h]</td>
<td>34.91</td>
<td>104.33</td>
<td>145.45</td>
</tr>
<tr>
<td>$Re_{\text{tot.}}$ [-]</td>
<td>10000</td>
<td>29900</td>
<td>42300</td>
</tr>
<tr>
<td>s_L [m/s]</td>
<td>0.36</td>
<td>0.36</td>
<td>0.42</td>
</tr>
<tr>
<td>l_F [m]</td>
<td>0.26·10$^{-3}$</td>
<td>0.26·10$^{-3}$</td>
<td>0.18·10$^{-3}$</td>
</tr>
</tbody>
</table>
Swirling lean premixed flame

- Classification in regime diagram

Small eddies penetrate only in preheat zone \rightarrow flamelet-like structure preserved

Laminar flame: T-profile

Turbulent length scale/ laminar flame thickness
Swirling lean premixed flame

• Visual impression
Swirling lean premixed flame

- Transition into flashback
 - Variation of swirl number
 - Variation of equivalence ratio
- Slight adaptation of nozzle geometry
 - Extension of bluff body

(b) Z=0mm

Steel or glass

Air + methane

Moveable-block

Steel or glass

Air + methane

Air

Air
Swirling lean premixed flame

• Three states of operation

(a) Stable: stabilization at the edge of the bluff body

(b) Spinning: flame precesses around the shell of the bluff body

(c) After flashback: the flame is stabilized at the swirler
Swirling lean premixed flame

- Precessing flame
Swirling lean premixed flame

- Precessing flame
Swirling lean premixed flame

- After flash back: view from top (slightly tilted)

- Flame luminescence monitored by intensified CMOS-camera at a frame rate of 7kHz
- Only 6 exposures of a full cycle are shown
- Cycle duration ~7.5±0.6ms.
Swirling lean premixed flame

- After flash back: view from top (slightly tilted)
Swirling lean premixed flame

- Transition from spinning into flashback
 - Transparent nozzle
 - Chemiluminescence recorded at high repetition rates (kHz-regime)
Swirling lean premixed flame

- Stability map
 - For fixed geometrical swirl number

- Flashback is favored by
 - Higher swirl intensity
 - Higher laminar flame speeds
Swirling lean premixed flame

- Inflow conditions
 - Characterization by optical methods: transparent nozzle and laser diagnostics
 - Characterization for non-reacting conditions: Hot-wire anemometry (HWA)
Bench mark configurations

• **Example 3: enclosed pressurized flames**
 – Non-premixed natural gas flames
 – Spray flames
Enclosed pressurized flames

- Modular setup
 - Pressure housing
 - Optically accessible flame tube
 - Complex infrastructure
 - Pressurized air supply
 - Electrical heating of combustion air to mimic inlet conditions of GT-combustor
 - Pressurized fuel supply (natural gas compressor, for liquid fuels high pressure pump and large storage capacity)
 - Exhaust gas treatment (cooling)
 - Safety equipment (sensors and explosion protection)
Enclosed pressurized flames

- Rig
Enclosed pressurized flames

- **Optically accessible combustor**
- “Can-combustor-concept”
- \(P_{\text{max}} = 10 \text{bar}, \ T_{\text{max}} = 773 \text{K} \)
- Modular to adapt different geometries/combustion concepts
- Optical access from three sides for LDA/PDA, PIV, LIF, CARS, etc.
- No disturbance of primary reaction zone by cooling air
- CAD-design for computational meshes
Enclosed pressurized flames

- **Nozzles**
 - Spray flames: n-heptane / air
 - Surrogate n-heptane advantageous compared to kerosene due to chemical kinetics modeling and spectroscopic properties
Enclosed pressurized flames

- Nozzles
 - Non-premixed gaseous flame: Natural gas / air

 - Simple, generic design
 - Non-reactive conditions: Mixture of helium and air to match density
 - Swirl number from geometry $S=1$
Enclosed pressurized flames

- **Operational conditions**

<table>
<thead>
<tr>
<th></th>
<th>2bar</th>
<th>4bar</th>
<th>6bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustion air temperature</td>
<td>623K</td>
<td>623K</td>
<td>623K</td>
</tr>
<tr>
<td>Fuel temperature</td>
<td>373K</td>
<td>373K</td>
<td>373K</td>
</tr>
<tr>
<td>Combustion air mass flow</td>
<td>30g/s</td>
<td>60g/s</td>
<td>90g/s</td>
</tr>
<tr>
<td>Re_{Air}</td>
<td>46000</td>
<td>92000</td>
<td>138000</td>
</tr>
<tr>
<td>Re_{Fuel}</td>
<td>33000</td>
<td>67000</td>
<td>100000</td>
</tr>
</tbody>
</table>
Enclosed pressurized flames

- Visual impression
Enclosed pressurized flames

- Visual impression – spray flame
Generic bench mark configurations

- Example 4: Optically accessible IC-engine
1-cylinder Diesel engine (Bosch)

- Non-reacting conditions
- Spray propagation and evaporation
1-cylinder Diesel engine (Bosch)

- View from bottom
1-cylinder Diesel engine (Bosch)

• Piston geometries

1. Flat piston

2. Piston bowl
1-cylinder Diesel engine (Bosch)

Engine data

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston geometry</td>
<td>Bowl / Flat</td>
</tr>
<tr>
<td>Rail pressure</td>
<td>300, 500, 800, 1350, 1800 bar</td>
</tr>
<tr>
<td>Pilot injection</td>
<td>1.5 mm³ at 21°CA</td>
</tr>
<tr>
<td>Main injection</td>
<td>30 mm³ at 2°CA (corresponds 7 bar p_{mi})</td>
</tr>
<tr>
<td>Engine speed</td>
<td>1500 1/min</td>
</tr>
<tr>
<td>Boost pressure</td>
<td>1200 mbar (abs), 1600 mbar (abs)</td>
</tr>
<tr>
<td>Coolant temperature</td>
<td>85 °C</td>
</tr>
<tr>
<td>Liner temperature</td>
<td>140 °C</td>
</tr>
</tbody>
</table>
1-cylinder Diesel engine (Bosch)

- Spray penetration and parameter of interest
Conclusions – bench mark configurations

- Configurations of rising complexity and different geometries necessary to study different phenomena
- Optical access in atmospheric flames no problem
- Pressurized combustion (GT-combustor or IC-engine)
 - causes large investments for reliable, safe and reproducible operation
 - realization of optical access more difficult
- Improved characterization of inflow conditions needs more attention
Validation sequence

• Bench mark flames
 – Requirements for optical diagnostics
 – Inflow and boundary conditions
 – Bench mark configurations and flame sequences

• Laser diagnostic methods
 – Flow field diagnostics
 – Scalar field diagnostics
 – Combined flow/ scalar field diagnostics

• Applications/ diagnostics at high repetition rates

• Comparison of experiments with LES-quantities
Comprehensive data set – demands

- Investigation of different geometries, Reynolds-numbers, swirl intensities, fuel compositions, ...
- Flow field
 - Mean velocities, fluctuations, Reynold-stresses
 - Strain, dilatation, vorticity
 - Integral length and time scales
 - Power spectral densities
- Scalar field
 - Means and fluctuation of temperature and chemical species concentrations
 - Structural information based on 2D- or quasi 3D-diagnostics
 - Scalar gradients
 - Wall/ nozzle temperatures
- Inflow conditions
- Information on unsteadiness, temporal sequences of flow/ scalar fields
Laser based diagnostics

- Non-intrusive
- Extremely high temporal and reasonable spatial resolution
- Flow field
 - Laser Doppler Velocimetry (LDV)
 - Particle Imaging Velocimetry (10 Hz – 30 kHz)
- Two-phase flows
 - Mie scattering
 - Phase Doppler Anemometry (PDA)
- Scalar field
 - Mie scattering
 - Planar Laser-Induced Fluorescence (PLIF)
 - 1D Raman/Rayleigh scattering
 - Coherent anti-Stokes Raman Spectroscopy (CARS)
 - Thermographic Phosphors (TG)
Spatial resolution

- **Laser properties**
 - Coherent radiation → well focusable → small spot sizes = small probe volumes
 - For TEM\textsubscript{00}-mode operation:
 - Typical values $f=350\text{mm}$, $d=10\text{mm}$, $\lambda=532\text{nm}$
 - Spot size diameter $2R\sim45\mu\text{m}$
 - In practice for pulsed lasers worse ($\sim200\mu\text{m}$)
Spatial resolution

- **Typical spatial scales in turbulent flows**

 - Integral length scale
 \[L_{ij,k}(\bar{x}, t) = \frac{1}{2} \int_{-\infty}^{\infty} \rho_{ij}(\bar{x}, t, r_k, 0) dr_k \]

 - Spatial correlation
 \[\rho_{ij}(\bar{x}, \bar{r}, t) = \frac{\sqrt{u'_i(\bar{x}, t)u'_j(\bar{x} + \bar{r}, t)}}{\sqrt{u_i'^2(\bar{x}, t)} \sqrt{u_j'^2(\bar{x} + \bar{r}, t)}} \]

 - Kolmogorov (smallest) length scale (\(\nu\) kinematic viscosity m\(^2\)/s)
 \[\eta_k = \left(\frac{\nu^3}{\varepsilon} \right)^{1/4} \quad \varepsilon = \frac{k^{3/2}}{L} \]
 \[\eta_k = \frac{L}{Re_t^{0.75}} \quad Re_t = \frac{k^{1/2}L}{\nu} \]
Spatial resolution

- Full optical resolution:
 \[2R \text{ (spot diameter)} < \eta_k \text{ (Kolmogorov scale)} \]
- Example non-reacting swirling flow

\[
\begin{align*}
\rho_{11,x} & \quad \text{for } dx / x \\
\rho_{11,r} & \quad \text{for } dr / x
\end{align*}
\]

\(30\text{iso} \; (\text{Re}=10000) \)
\(L_{11,x}=10\text{mm} \)

\(30\text{iso} \; (\text{Re}=10000) \)
\(L_{11,r}=6\text{mm} \)

\[\eta_k \sim 50\mu m \]
Spatial resolution

- Comparison optical resolution and Kolmogorov scale
 - Spot size $2R \approx 45\mu m$ (f=350mm, d=10mm, $\lambda=532nm$)
 - Kolmogorov scale $\eta_k \approx 50\mu m$ (air flow at Re=10000)
 - Same order of magnitude but in practice often not fully resolved
 - Smoothing of measurands is an important issue
Temporal resolution

• **Pulsed laser operation**
 - Quality (q-) switch allows ns-pulses (10^{-9} s)
 - 1ns pulse corresponds to ~30cm
 - Pulsed operation increases intensity dramatically → non-linear optical methods become feasible (most prominent method CARS)

• **Typical time scales in turbulent flames**

 - Integral time scale
 \[
 T_{ij}(\bar{x}, t) = \frac{1}{2} \int_{-\infty}^{\infty} \rho_{ij}(\bar{x}, t, 0, \tau) d\tau
 \]

 - Temporal auto-correlation
 \[
 \rho_{ij}(\bar{x}, t, 0, \tau) = \frac{u'_i(\bar{x}, t)u'_j(\bar{x}, t + \tau)}{\sqrt{u'^2_i(\bar{x}, t)} \sqrt{u'^2_j(\bar{x}, t + \tau)}}
 \]

 - Kolmogorov time scale
 \[
 \tau_k = \left(\frac{\nu}{\varepsilon}\right)^{1/2}
 \]

 \[
 \varepsilon = \frac{k^{3/2}}{L}
 \]
Temporal resolution

- Example reacting swirling lean premixed flame

- Comparison optical resolution and Kolmogorov time scale
 - Laser pulses are much shorter than any time scales in turbulent flames
 - Temporal resolution is no problem
 → Comparison of calculated and measured power spectra better in frequency domain

\[\tau_k \sim 170 \mu s \]

PSF-30 (Re=10000)
T=1.2ms
0D – 3D measurements by laser diagnostics

- **Up to 3 spatial dimensions are observable**
 - 0D/1D: generation of a thin laser beam
 - 2D: generation of a laser light sheet
 - Quasi-3D: multiple and parallel laser light sheets
Flow field measurements

- **Spectroscopic methods**
 - Doppler-shift of absorption/ emission line
- **Particle based methods**
 - Doppler shift during Mie scattering process (Laser Doppler Velocimetry, LDV)
 - Sequential exposures of instantaneous particle positions by Mie scattering (Particle Image Velocimetry, PIV)
Particle-based flow field measurements

- Gaseous flames need appropriate seed material for Mie scattering
- Mie scattering
 - Intensity of Mie scattered light in dependence of particle diameter

For $n=1.51 \Rightarrow d=1\mu m$

Rayleigh-domain $d_p < \lambda$
Mie-domain $d_p \sim \lambda$
Geometrical optics $d_p >$
Particle-based flow field measurements

- **Mie scattering**
 - Intensity of Mie scattered light in dependence of scattering angle
 - Example: transparent glass bead, 1µm diameter

![Diagram](image)

- Forward scattering highest intensities
Particle-based flow field measurements

- **Seeding material for turbulent flame research**
 - Chemically inert
 - Melting point exceeding adiabatic flame temperatures (>2500K)
 - Sufficiently small to reduce slip s between particle (u_p) and gaseous fluid (u_f)

\[s = \left| \frac{u_f - u_p}{u_f} \right| < 1\% \]

- Cut-off frequency exceeding slip of 1%

\[f_c = \frac{\sqrt{2s - s^2}}{2\pi\tau_0 \sqrt{\left(1 - s^2\right) \left(1 + \frac{\rho_f}{2\rho_p}\right)^2 - \left(\frac{3\rho_f}{2\rho_p}\right)^2}} \]

\[\tau_0 = \frac{\rho_p d_p^2}{18\eta} \quad \eta: \text{dynamic viscosity} \]
Particle-based flow field measurements

- Seeding materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Short notation</th>
<th>Density [kg/m3]</th>
<th>Melting point [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium oxide</td>
<td>MgO</td>
<td>3500</td>
<td>2800</td>
</tr>
<tr>
<td>Zirconium silicate</td>
<td>ZrSiO$_4$</td>
<td>3900 - 4700</td>
<td>2420</td>
</tr>
<tr>
<td>Titanium dioxide</td>
<td>TiO$_2$</td>
<td>4000</td>
<td>1780</td>
</tr>
</tbody>
</table>
Particle-based flow field measurements

- Example
 - MgO
 - f_c: maximal turbulent fluctuations that can be resolved, slip < 1%

\rightarrow Smaller particles and higher viscosity (higher T) expand the range of resolvable velocity fluctuations
Particle-based flow field measurements

- Addition of seed material to the flow
 - All gas feeds must be seeded, **otherwise results can be biased**
 - Volume fraction of seed material must be variable
- Bypass, controlled and variable mass flow
- Appropriate assembly for addition of seed (“seeding-generator”)
Laser Doppler Velocimetry

• **Principle**
 – Pictorial explanation, correct derivation in text books

\[\Delta x \times \text{particle flight time} = \Delta t \text{(measured)} \]

\[|\vec{V}_{\perp \text{Interference pattern}}| = \frac{\text{distance between stripes}}{\text{particle flight time}} = \frac{\Delta x}{\Delta t} \]

Instantaneous velocity, temporal resolution ~µs
Laser Doppler Velocimetry

• Measurement of absolute values = ambiguity in direction
 → Use of moving interference stripes (generated by Bragg cell, phonon-photon interaction)
 – Burst frequency versus velocity
Laser Doppler Velocimetry

Without shift

With shift
Laser Doppler Velocimetry

- Practical realization
 - Continuous wave (cw) laser: argon ion laser
Laser Doppler Velocimetry

- Two velocity component measurement
 - Two colors from argon ion laser
 - Two photomultiplier tubes equipped with interference filters
Laser Doppler Velocimetry

- **Commercial setup**
 - Optical fibres
 - Simple alignment
Laser Doppler Velocimetry

- Single-point, 2-component LDV: Measured variables
 - Mean velocity
 - \(t_i \): transit time, weighting by \(t_i \) to avoid bias by “fast particles”
 \[
 \bar{u} = \frac{\sum_{i=1}^{N} u_i \cdot t_i}{\sum_{i=1}^{N} t_i}.
 \]
 - Velocity variance
 \[
 \left< u'^2 \right> = \frac{\sum_{i=1}^{N} u_i'^2 \cdot t_i}{\sum_{i=1}^{N} t_i}
 \]
 - Standard deviation, root-mean-square
 \[
 \sigma_u = \sqrt{\left< u'^2 \right>}
 \]
 - Turbulent kinetic energy
 \[
 k = \frac{1}{2} \left(\sigma_u^2 + 2 \cdot \sigma_v^2 \right)
 \]
 - Reynolds stresses
 \[
 \left< u'v' \right> = \frac{\sum_{i=1}^{N} u_i'v_i' \cdot t_i}{\sum_{i=1}^{N} t_i}
 \]
Laser Doppler Velocimetry

- Single-point, 1-component LDV (→higher data rates): Measured variables
- Data base consisting of time-series
 - Temporal covariance: $\Delta x=0, i=j$
 \[
 R_{ij}(\bar{x}, \Delta x, t, \Delta t) = u_i'(\bar{x}, t)u_j'(\bar{x} + \Delta x, t + \Delta t)
 \]
 - Integral time scale
 \[
 T_{ij}(\bar{x}, t) = \frac{1}{2u_i'(%x, t)u_j'(\bar{x} + \Delta \bar{x}, t + \Delta t)} \int_{-\infty}^{\infty} R_{ij}(\bar{x}, t, 0, \Delta t) d(\Delta t)
 \]
 - Power spectral density
 \[
 \Psi_{ij}(\bar{x}, \kappa, t) = \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} \exp(-i\kappa\Delta \bar{x}) R_{ij}(\bar{x}, \Delta \bar{x}, t) d(\Delta \bar{x})
 \]
Laser Doppler Velocimetry

- Single-point, 1-component LDV: Measured variables
- Example isothermal jet
Laser Doppler Velocimetry

- **Two-point, 1-component LDV:** Measured variables
- **Data base consisting of time-series**
 - Spatial covariance: $\Delta t=0$
 $$R_{ij}(\bar{x}, t, \Delta \bar{x}, \Delta t) = u'_i(\bar{x}, t)u'_j(\bar{x} + \Delta \bar{x}, t + \Delta t)$$
 - Integral length scale
 $$L_{ij}(\bar{x}, t) = \frac{1}{2u'_i(\bar{x}, t)u'_j(\bar{x} + \Delta \bar{x}, t)} \int_{-\infty}^{\infty} R_{ij}(\bar{x}, t, \Delta \bar{x}, 0)d(\Delta x)$$
Laser Doppler Velocimetry

- Two-point, 1-component LDV: Measured variables
- Example: Isothermal jet, time-space correlation

\[\rho_{ij}(\bar{x}, t, \Delta z, \Delta t) = \frac{u'_i(\bar{x}, t)u'_j(\bar{x} + \Delta z, t + \Delta t)}{\sqrt{u'^2_i(\bar{x}, t) \cdot u'^2_j(\bar{x} + \Delta z, t + \Delta t)}}. \]
Particle Image Velocimetry

- Principle
Particle Image Velocimetry

- Movie of particles in reacting turbulent opposed jet flow
Particle Image Velocimetry

- Imaging

- Full-frame interline transfer CCD
Particle Image Velocimetry

- **Cross-correlation**

 Frame 1: \(t = t_0 \)

 Frame 2: \(t = t_0 + \Delta t \)

 Full frame

 Interrogation windows, they determine spatial resolution
Particle Image Velocimetry

- Cross-correlation

\[R_{II'} (x, y) = \sum_{i=-K}^{K} \sum_{j=-L}^{L} I(i, j) I'(i + x, j + y) \]
Particle Image Velocimetry

• Practical realization

Interrogation volume size
Here: 32 x 32 pixel

\[\hat{R}_{II}(i, j) = \hat{I}_1(i, j) \cdot \hat{I}_2(i, j) \]
Particle Image Velocimetry

- Practical realization

\[\Delta x = \Delta \frac{x}{\Delta t} \]

\[u = \Delta x / \Delta t \]

- Result: instantaneous 2-component velocity field in a plane
Particle Image Velocimetry

- Example:
 - PIV at 6 kHz repetition rate to study in-cylinder flow field
 - Single cycle out of 70
Particle Image Velocimetry

- **Measured variables**
 - Mean, variance and Reynolds stresses as in 2-component LDV
 - Instantaneous velocity gradients (w velocity in z-direction)

- Out-of-plane vorticity
 \[\omega = \frac{1}{2} \left| \frac{\partial w}{\partial r} - \frac{\partial v}{\partial z} \right| \]

- 2D-Dilatation
 \[(\nabla \cdot V)_{2D} = \left(\frac{\partial w}{\partial z} + \frac{\partial v}{\partial r} \right) \]

- Less suited for time and space correlation measurements
Particle Image Velocimetry

- **LDV versus PIV**
 - Seeding density
 - PIV: needs at least 10 particles per interrogation volume → for a fixed spatial resolution a minimal seeding density is required
 - LDV: seeding density can be as low as required (on the expense of data acquisition time), seeding density and spatial resolution are decoupled
 - Calibration/ data post processing
 - PIV: cross-correlation algorithm required, long CPU-times (→good statistics not feasible), calibration needed
 - LDV: fast online data processing by optimized CPUs, no calibration required
 - Measured variables
 - LDV: reliable “point-data”, investigation of local neighborhood by two-point LDV cumbersome
 - PIV: instantaneous velocity gradients in different directions

→ LDV and PIV are complementary techniques