A. TROUVÉ

Codes Incendies

Mardi 1 Juin 2010, 18h30 - 19h30
CFD-Based Compartment Fire Modeling

Arnaud Trouvé

Department of Fire Protection Engineering
University of Maryland
College Park, MD 20742 (USA)
CFD-Based Compartment Fire Modeling

• Outline
 ➢ Overview of Compartment Fire Dynamics
 ➢ Overview of Fire Modeling
 ➢ Examples of Compartment Fire Simulations
Compartment Fires

- **Example:**
 - *Sequence of events:* localized ignition of Christmas tree; rapid fire spread (fuel sources = Christmas tree, wall lining, armchair and sofa, lamp shade, drawer chest and table, carpet, bunny toy); rapid filling of compartment with smoke; transition to flashover
 - Test conducted by the National Institute of Standards and Technology
Compartment Fires

• Example:
Compartment Fires

- **Main features**: fire is an unusual combustion process in which the fuel supply corresponds to a large list of flammable objects and materials, usually in solid or liquid form
 - solids (wood, plastics, foams, fabric, linings, *etc*)
 - liquids (engine fuels, LNG, melted solids, *etc*)
Compartment Fires

- **Main features**: fire is an unusual combustion process in which the fuel supply is unknown
 - Typical production of flammable vapors in a fire:
 - Consider a flammable solid object/material that is a potential fuel source
 - At ambient temperature, the fuel is in solid form, the oxygen (from air) in gaseous form, and there is no combustion
 - At moderately elevated temperatures (typically 200-400 degrees Celsius), a complex thermal degradation process is initiated in the solid object/material, that corresponds to a phase change and produces fuel in gaseous form. This gasification process is called pyrolysis.
Main features: fire is an unusual combustion process in which the fuel supply is unknown

- Typical production of flammable vapors in a fire:
 - The fuel gasification rate is determined by a heat feedback mechanism
 - Fuel gasification is an endothermic process and heat comes from the gas-to-solid heat transfer
 - The fuel gasification rate is controlled by the rate of gas-to-solid heat transfer
• **Main features:** fire is an unusual combustion process in which
 the fuel supply is unknown
 - Typical production of flammable vapors in a fire:
 - The gas-to-solid thermal feedback controls the fuel mass loss rate and thereby the overall fire size

 The fraction of energy fed back to the fuel source is typically a small fraction of the energy released by combustion:

 \[
 \chi_{\text{feedback}} \approx \frac{\Delta H_{\text{pyro}}}{\Delta H_{\text{comb}}} \approx 0.01 - 0.06
 \]

 - The thermal feedback has 2 components corresponding to convective and radiative heat transfer
Compartment Fires

- **Main features**: fire is a buoyancy-driven, relatively-slow, non-premixed combustion process
 - *Example*: pool fire configuration
 - Fuel source velocity is small (a few cm/s)
 - Buoyancy effects accelerate the flow up to several m/s; flow regime corresponds to moderate turbulence intensities
 - Flame corresponds to diffusion combustion and to a thin reaction sheet where fuel and air meet in stoichiometric proportions
 - Slow velocities and long residence times promote soot formation and radiant losses
 \[\chi_{rad} = \left(\dot{Q}_{rad} / \dot{Q}_{comb} \right) \sim 35\% \]

Slide 10
Main features: fire is a buoyancy-driven, relatively-slow, non-premixed combustion process

- Example: pool fire configuration
 - Flame height scales with Froude number

\[
Fr_F = \frac{u_F (Z_{st})^{3/2}}{[\left(\frac{\Delta T_f}{T_\infty}\right) g d_F \left(\frac{\rho_F}{\rho_\infty}\right)^{1/2}]^{1/2}}
\]

\[
\dot{Q}^* = \frac{\dot{Q}_{comb}}{\rho_\infty c_{p,\infty} T_\infty \sqrt{gd_F d_F}} \sim Fr_F
\]
Compartment Fires

- **Main features**: fire is a buoyancy-driven, relatively-slow, non-premixed combustion process
 - Example: pool fire configuration

- **Buoyancy**-driven flame regime:
 - low velocities, large diameters
 - $\dot{Q}^* < 10^5$, $Fr_f < 5$, $(L_f / d_F) = O(1)$

- **Momentum**-driven flame regime:
 - high velocities, small diameters
 - $\dot{Q}^* > 10^5$, $Fr_f > 5$, $(L_f / d_F) >> 1$
Main features: flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer.
Main features: flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer

- Smoke layer composition: hot combustion products mixed with ambient air; depending on fuel type and combustion conditions, may contain significant amounts of soot

- Soot particles
 - Product of incomplete combustion
 - Phase: solid
 - Chemical composition: primarily made of carbon atoms
 - Particle size distribution: from a few nanometers \((10^{-9} \text{ m})\) to several millimeters \((10^{-3} \text{ m})\)
 - Particles geometry: complex shapes (agglomerates of elementary spherical particles)
Main features: flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer

- Smoke layer depth: depends on fire size and vent flow rates

Accumulation of smoke near ceiling

Smoke filling and loss of visibility

Fast fire growth and smoke descent to floor
Main features: flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer

- Impact of smoke layer: increases (radiation-driven) heat feedback to fuel sources

\[
\begin{align*}
G_{UL} & = \epsilon_{UL} \sigma T_{UL}^4 \\
\epsilon_{UL} & = (1 - \exp(-\kappa_{UL} \times d_{UL})) \\
\kappa_{UL} & = p(x_{H_2O,UL} a_{H_2O}(T) + x_{CO_2,UL} a_{CO_2}(T)) \\
& + C_{soot} f_{v,UL} T_{UL} \\
\end{align*}
\]
Compartment Fires

- **Main features:** flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer
 - Impact of smoke layer: increases heat feedback to fuel sources
 - Soot contributes to, and often dominates thermal radiation transport

\[G_{UL} \approx \sigma T_{soot}^4 \]

- Hot soot: emitter of radiation energy (responsible for yellow glow from flames and thereby responsible for flame luminosity)
- Cold soot: absorber of radiation energy (responsible for flame opacity)
Compartment Fires

- **Main features:** flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer
 - Impact of smoke layer: increases heat feedback to fuel sources, therefore increases fuel gasification rate and heat release rate
Compartment Fires

- **Main features**: flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer
 - Impact of smoke layer: increases heat feedback to fuel sources, therefore increases fuel gasification rate and heat release rate (fire growth and fire spread)
 - Possible transition to *flashover* (rapid series of ignition events involving all flammable objects/materials present in the fire room)
Compartment Fires

- **Main features:** flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer
 - Possible transition to *flashover*: may trigger in turn a transition to *under-ventilated* combustion

Flames extending out of the compartment of fire origin
Main features: flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer

- Possible transition to *under-ventilated* combustion
- Flame location: (1) near the fuel source; (2) near the vents
Main features: flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer

- Possible transition to under-ventilated combustion
- Classical Burke-Schumann problem (1928): 2 possible regimes

Laminar flame-flow configuration

- Air flows into the compartment
- Fuel is introduced at the base
- Flame forms and rises towards the ceiling
- Walls confine the flame
- Over-ventilated flame with higher heat release rate
- Under-ventilated flame with lower heat release rate

Graph showing flame height (z) as a function of distance (x) for two cases: \(\Phi_a < l \) and \(\Phi_a > l \).
Main features: flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer

- Possible transition to *under-ventilated* combustion
- Smoke layer composition: (1) products of complete combustion mixed with air; (2) products of incomplete combustion

(1) Over-ventilated combustion,

(2) Under-ventilated combustion
- **Main features**: flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer
 - Impact of smoke layer: air vitiation as the compartment fire system evolves from well-ventilated to *under-ventilated* combustion
 - Air vitiation reduces the flame intensity and promotes flame extinction
Compartment Fires

- **Main features**: flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer
 - Reduced-scale compartment fire experiments (Utiskul & Quintiere)
 - Vent size: variable width and height
 - Fuel pan: variable diameter

![Diagram of compartment fire setup]

Inner Size: 40x40x40 cm³

- Top Vent
- Upper Gas Tube
- Front Wall Thermocouples
- Lower Gas Tube
- Bottom Vent
- Stand to Load Cell with Water Seal
- Heat Flux Gauge
- Adjustable Back Wall
- Heat Flux Gauge
- Center Thermocouple
- Heat Flux Gauge
- Fuel Pan
Compartment Fires

- **Main features**: flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer
 - Reduced-scale compartment fire experiments (Utiskul & Quintiere)
 - Steady under-ventilated fire (flame stabilized at the vents)
Compartments Fires

- **Main features**: flow confinement and buoyancy forces lead to the formation of a ceiling-level smoke layer
 - Reduced-scale compartment fire experiments (Utiskul & Quintiere)
 - Unsteady under-ventilated fire leading to complete flame quenching
CFD-Based Compartment Fire Modeling

- **Outline**
 - Overview of Compartment Fire Dynamics
 - **Overview of Fire Modeling**
 - Examples of Compartment Fire Simulations
Zone modeling

- A simplified two-layer description of compartment fires
- Main features
 - Computationally cheap (2 control volumes per compartment)
 - System-level view point (unlimited in problem size and scope)
 - Limited domain of application (large use of empirical correlations)

Fire Modeling Software

Wall Boundaries (ceiling, side walls, floor)

- Upper layer:
 - Flame zone
 - Fire plume
 - Ceiling smoke layer
- Lower layer:
 - Floor air layer

- *Zone (mass, energy conservation statements)*

Slide 29
• Zone modeling
 ➢ A simplified two-layer description of compartment fires
 ➢ Developed in the 1980s, acted as a precursor of CFD-based approaches developed in the 1990s
 ➢ Landscape
 • Commercial software: MAGIC (EDF, France)
 • Software with limited distribution: BRI2002 (Building Research Institute, Japan), *etc*
 • Open-source software: CFAST (NIST)
• **CFD modeling**
 - Still a recent (approximately 15 years old) and fast evolving activity
 - Early adoption and now widespread use by different fire safety stakeholders (including researchers, engineers and non-engineers)
 - **Landscape**
 - No commercial software
 - Software with limited distribution: JASMINE (Building Research Establishment, UK), KAMELEON (Norwegian University of Science and Technology/SINTEF, Norway), SMARTFIRE (University of Greenwich, UK), SOFIE (University of Cranfield, UK)
 - Open-source software: FDS (NIST, USA), FireFOAM (FM Global, USA), ISIS (IRSN, France), Code_Saturne (EDF, France)
Fire Modeling Software

- CFD modeling
 - Landscape
 - **RANS models**: JASMINE (Building Research Establishment, UK), KAMELEON (Norwegian University of Science and Technology/SINTEF, Norway), SMARTFIRE (University of Greenwich, UK), SOFIE (University of Cranfield, UK)
 - **LES models**: FDS (NIST, USA), FireFOAM (FM Global, USA), ISIS (IRSN, France), Code_Saturne (EDF, France)
 - **RANS versus LES**
 - RANS limitation: model coefficients are configuration-dependent and require careful calibration work; not well-suited to fire problems that feature a wide variety of configurations
 - LES capability: well-suited to capture the strongly unsteady transient phases observed in fire dynamics as well as the large-scale flow and combustion features that are typical of fire configurations
• **CFD modeling:** fire modeling requires model descriptions of a range of complex multi-physics phenomena
 - Buoyancy-driven turbulent flow
 - Non-premixed combustion
 - Pyrolysis processes
 - Soot formation/oxidation
 - Thermal radiation transport
Fire Modeling (LES)

- **Turbulence modeling**: buoyancy-driven turbulent flow
 - Species mass conservation

\[
\frac{\partial}{\partial t} (\overline{\rho Y_k}) + \frac{\partial}{\partial x_j} (\overline{\rho Y_k u_j}) = - \frac{\partial \lambda_{kj}}{\partial x_j} + \frac{\partial}{\partial x_j} (\rho D_k \frac{\partial Y_k}{\partial x_j}) + \dot{\omega}_k
\]

\[
\lambda_{kj} = \overline{\rho Y_k u_j} - \overline{\rho Y_k u_j}
\]

requires modeling

Slide 34
Turbulence modeling: buoyancy-driven turbulent flow

- Gradient transport model for turbulent fluxes
 \[
 \lambda_{kj} = -\frac{\mu_t}{Sc_t} \frac{\partial \tilde{Y}_k}{\partial x_j}
 \]
 \(\mu_t\) is a turbulent viscosity
 \(Sc_t\) is a turbulent Schmidt number

- Smagorinsky model: closure expression for the turbulent viscosity
 \[
 \mu_t = \overline{\rho} (C_s \Delta)^2 \sqrt{\frac{1}{2} \left(\frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial \tilde{u}_j}{\partial x_i} \right) \left(\frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial \tilde{u}_j}{\partial x_i} \right)}
 \]
 magnitude of the grid-resolved strain rate tensor

where \(\Delta = (\Delta x_1 \Delta x_2 \Delta x_3)^{1/3}\)
- **Turbulence modeling**: buoyancy-driven turbulent flow
 - Modifications of Smagorinsky model due to buoyancy are usually neglected (grid-resolved buoyancy effects are captured but subgrid-scale effects are not treated)
 - Example of a pool fire configuration

Slide 36
Fire Modeling (LES)

- **Turbulence modeling**: buoyancy-driven turbulent flow
 - Wall-bounded boundary layer flows feature small-scale physics and represent a special challenge for a CFD treatment
 - Turbulent boundary layer flows feature sharp gradients of flow velocity and temperature at the wall surface
 - These gradients need to be evaluated in order to calculate the wall shear stress and (convective) wall heat flux

\[
\tau_w(x) = \mu \left. \frac{\partial u}{\partial y} \right|_{y=0} ; \quad \dot{q}_{w,c}(x) = -k \left. \frac{\partial T}{\partial y} \right|_{y=0}
\]
Turbulence modeling: buoyancy-driven turbulent flow

- Scaling (vertical walls, limit of large Grashof numbers)
 - Viscous sub-layer
 \[\theta^* = y^* \,, \quad 0 \leq y^* \leq 3 \]
 - Logarithmic layer
 \[\theta^* = 0.427 \log(y^*) + 1.93 \,, \quad 3 \leq y^* \]
Fire Modeling (LES)

- **Turbulence modeling**: buoyancy-driven turbulent flow
 - Scaling (vertical walls, limit of large Grashof numbers)
 - Wall-resolved treatment (first off-wall fluid node in viscous sub-layer)

\[
\dot{q}''_{w,c} = -k \frac{\partial \tilde{T}}{\partial y}_{w}
\]

Computational grid requirement

\[
0 \leq y_1 \leq 3 \times \frac{(\nu / Pr)^{3/4}}{(\dot{q}''_{w,c} / \rho c_p)^{1/4} (g \beta)^{1/4}}
\]

\[\Delta y_1 \sim 1 \text{ mm}\]
Turbulence modeling: buoyancy-driven turbulent flow

- Scaling (vertical walls, limit of large Grashof numbers)
 M. Hölling & H. Herwig (J. Fluid Mech., 2005)
 - Wall-modeled treatment (first off-wall fluid node in logarithmic layer)

\[
\frac{(h_w - \tilde{h}_1)(\nu / Pr)^{1/4}(g\beta)^{1/4}}{c_p(\dot{q}_{w,c} / \rho c_p)^{3/4}} = 0.427 \log\left(\frac{y_1(\dot{q}_{w,c} / \rho c_p)^{1/4}(g\beta)^{1/4}}{(\nu / Pr)^{3/4}}\right) + 1.93
\]

Mixed thermal boundary condition that relates the wall quantities
\(h_w\) and \(\dot{q}_{w,c}\) to the off-wall enthalpy variable \(\tilde{h}_1\)
Fire Modeling (LES)

- **Combustion modeling**: non-premixed turbulent combustion
 - Combustion chemistry: **single-step chemistry model**
 - Fuel composition is often unknown, use a representative surrogate fuel (wood, plastic, foam, fabric, etc)
 - Use a global combustion equation (no detailed chemistry)

\[
C_nH_mO_p + \{n + (m/4) - (p/2) - (v_{CO}/2) - v_{soot}\}O_2 \\
\rightarrow (n - v_{CO} - v_{soot})CO_2 + (m/2)H_2O + v_{CO}CO + v_{soot}C
\]

Possible extension to include \(CO \), soot

Slide 41
Fire Modeling (LES)

- **Combustion modeling**: non-premixed turbulent combustion
 - **Infinitely fast chemistry model**: classical mixture fraction-based model
 - Reactive mixture composition

\[
\tilde{Y}_k = \int_0^1 Y_k^{eq}(Z) \tilde{p}(Z) \, dZ
\]

- *state relations* subgridPdf of *Z*
• **Combustion modeling**: non-premixed turbulent combustion
 ➢ Reactive mixture composition: infinitely fast chemistry model
 ➢ Use mixture fraction Z as principal variable and use state relationships to reconstruct the reactive mixture composition once mixture fraction is known

\[
Y_k^{eq}(Z) = 1
\]

![Diagram](image-url)

- $Z_{st} \eta_{CO_2}$
- $Y_{O_2,a}^{eq}$
- $Y_{H_2O}^{eq}$
- $Y_{CO_2}^{eq}$
- Y_{F}^{eq}

Slide 43
• **Combustion modeling:** non-premixed turbulent combustion

 ➢ Reactive mixture composition: infinitely fast chemistry model

 - Use presumed β-Pdf (probability density function) model to describe subgrid-scale variations of mixture fraction

\[
\tilde{p}(Z) = \frac{Z^{a-1} (1 - Z)^{b-1}}{\int_0^1 Z^{a-1} (1 - Z)^{b-1} dZ}
\]

where:

\[
a = \tilde{Z} \left(\frac{\tilde{Z} (1 - \tilde{Z})}{(Z_{rms})^2} - 1 \right)
\]

\[
b = (1 - \tilde{Z}) \left(\frac{\tilde{Z} (1 - \tilde{Z})}{(Z_{rms})^2} - 1 \right)
\]

\[
(Z_{rms})^2 = C_{Z_{rms}}^2 \left| \nabla \tilde{Z} \right|^2
\]
• **Combustion modeling:** non-premixed turbulent combustion
 - Reactive mixture composition: infinitely fast chemistry model
 - Solve for spatial/temporal variations of grid-resolved mixture fraction

\[
\frac{\partial}{\partial t} (\rho \bar{Z}) + \frac{\partial}{\partial x_j} (\rho \bar{Z} \bar{u}_j) = \frac{\partial}{\partial x_j} \left(\frac{\mu}{Sc} + \frac{\mu_t}{Sc_i} \frac{\partial \bar{Z}}{\partial x_j} \right)
\]
Fire Modeling (LES)

- **Combustion modeling**: non-premixed turbulent combustion
 - **Finite-rate chemistry model**: explicit treatment of mean chemical reaction rates
 - Reactive mixture composition

\[
\hat{Y}_k = \int \int Y^s_{k} (c_1, c_2) \tilde{p}(c_1, c_2) dc_1 dc_2
\]

- State relations
- Subgrid Pdf of Z
Combustion modeling: non-premixed turbulent combustion

- Reactive mixture composition: finite-rate chemistry model
 - Use progress variables c_1 and c_2 as principal variables and use state relations to reconstruct the mixture composition once c_1 and c_2 are known
 - Global combustion equation
 \[
 C_nH_mO_p + \left\{ n + \left(\frac{m}{4} - \frac{p}{2} - \frac{v_{CO}}{2} - v_{soot} \right) \right\} O_2 \rightarrow \left(n - v_{CO} - v_{soot} \right) CO_2 + \left(\frac{m}{2} \right) H_2 O + v_{CO} CO + v_{soot} C
 \]
 - Carbon mass decomposition
 \[
 Z = Y_{C_nH_mO_p} + \left(\frac{W_{C_nH_mO_p}}{nW_{CO_2}} \right) Y_{CO_2} + \left(\frac{W_{C_nH_mO_p}}{nW_{CO}} \right) Y_{CO} + \left(\frac{W_{C_nH_mO_p}}{nW_{soot}} \right) Y_{soot}
 \]
 c_1 represents fuel mass (THC); c_2 represents combined CO_2, CO and soot mass
• **Combustion modeling:** non-premixed turbulent combustion
 - Reactive mixture composition: finite-rate chemistry model
 - State relationships give the reactive mixture composition as a function of the principal variables c_1 and c_2
 \[Y_{k}^{sr}(c_1, c_2) \]
 - Use presumed Dirac-Pdfs (probability density function) model to describe subgrid-scale variations of c_1 and c_2
 \[\tilde{p}(c_1, c_2) \approx \tilde{p}(c_1) \times \tilde{p}(c_2) \approx \delta(c - \tilde{c}_1) \times \delta(c - \tilde{c}_2) \]
Fire Modeling (LES)

- **Combustion modeling:** non-premixed turbulent combustion
 - Reactive mixture composition: finite-rate chemistry model
 - Solve for spatial/temporal variations of grid-resolved reaction progress variables c_1 and c_2

 $$
 \frac{\partial}{\partial t} (\bar{\rho} \bar{c}_1) + \frac{\partial}{\partial x_i} (\bar{\rho} \bar{u}_i \bar{c}_1) = \frac{\partial}{\partial x_i} (\bar{\rho} (D + D_t) \frac{\partial \bar{c}_1}{\partial x_i}) - \bar{\omega}_{12}^m
 $$

 $$
 \frac{\partial}{\partial t} (\bar{\rho} \bar{c}_2) + \frac{\partial}{\partial x_i} (\bar{\rho} \bar{u}_i \bar{c}_2) = \frac{\partial}{\partial x_i} (\bar{\rho} (D + D_t) \frac{\partial \bar{c}_2}{\partial x_i}) + \bar{\omega}_{12}^m
 $$

 - Closure model for the chemical reaction rates: Eddy Dissipation Concept

 $$
 \bar{\omega}_{12}^m = \bar{\rho} \times \frac{\min(\bar{Y}_F; \bar{Y}_{O_2} / r_s)}{\tau_t}
 $$

 where $\tau_t = C_t \times (\Delta^2 / \nu_t)$
• **Combustion modeling**: non-premixed turbulent combustion

\[
\dot{q}_{\text{comb}}^m = \bar{\rho} \times \frac{\min(\bar{Y}_F; \bar{Y}_{O_2} / r_s)}{\tau_t} \times \Delta H_{\text{comb}}
\]

where \(\tau_t = C_t \times (\Delta^2 / \nu_t) \)
Fire Modeling (LES)

- **Combustion modeling:** non-premixed turbulent combustion
 - Diffusion flame extinction: dominant factor in poorly-ventilated fires
 - Different flame extinction mechanisms
 - Quenching by dilution: flame weakening due to changes in fuel stream or oxidizer stream composition (*e.g.* air vitiation in under-ventilated fires)
 - Thermal quenching: flame weakening due to heat losses (*e.g.* heat losses by convection/conduction, by thermal radiation, by evaporative cooling)
 - Aerodynamic quenching: flame weakening due to flow-induced perturbations (*i.e.* decrease in flame residence time)

![Flame](image)

- Fuel side
- Oxidizer side
- \(Y_F < 1 \)
- \(Y_{O_2} < Y_{O_{2,a}} \)
- \(T_{\text{flame}} < T_{\text{ad}}^{\text{flame}} \)
- \(\text{Fuel side} \quad \text{Oxidizer side} \)

Slide 51
Combustion modeling: non-premixed turbulent combustion

- Different flame extinction mechanisms

- Single criterion to predict extinction (laminar flame theory):

 \[
 Da = \frac{\tau_{\text{mixing}}}{\tau_{\text{chemical}}} \leq Da_{\text{critical}}
 \]

 \[
 Da = \frac{\tau_{\text{mixing}}}{\tau_{\text{chemical}}} \sim \frac{1}{\chi_{st}} \exp\left(\frac{T_a}{T_{st}}\right)
 \]

- Two fundamental limits:
 - **Fast mixing limit**: \(Da \) is small because \(\chi_{st} \) is large (e.g., aerodynamic quenching)
 - **Slow mixing limit**: \(Da \) is small because \(T_{st} \) is small (e.g., thermal or dilution quenching)
Combustion modeling: non-premixed turbulent combustion

- Flammability map with fuel-air mixing rate and flame temperature as coordinates

\[T_{st} \]

\[\delta_c^* \approx 1 \] Extinction limit (AEA theory)

Engine extinction event

Fire extinction event

Extinction
• **Pyrolysis modeling:** description of fuel mass loss rate
 ➢ Different approaches

 ❖ **Empirical:** prescribed fuel mass loss rate (MLR); variable ignition timing

 ❖ **Semi-empirical:** MLR described as perturbation of free-burn values with modifications due to smoke-layer/walls gas-to-solid thermal feedback and air vitiation

 ❖ **Advanced:** MLR predicted from gas-to-solid thermal feedback and finite rate decomposition kinetics
• **Pyrolysis modeling**: description of fuel mass loss rate

 - **Finite-rate chemistry model**: explicit treatment of thermal decomposition chemistry
 - Thermal degradation across flammable solid described by a local one-dimensional problem in the direction normal to the exposed solid surface

\[
\rho_s c_s \frac{\partial T_s}{\partial t} = \frac{\partial}{\partial x} \left(k_s \frac{\partial T_s}{\partial x} \right) - \omega_g \frac{\Delta H_{v,g}}{\partial T_s} - m_g c_g \frac{\partial T_s}{\partial x}
\]

- **energy consumed by gasification**
- **convective transport by gas flow**

\[
-k_s \frac{\partial T_s}{\partial x}(0, t) = -\varepsilon G + \varepsilon \sigma (T_s(0, t)^4 - T_\infty^4) + h(T_s(0, t) - T_\infty)
\]

- **heat flux to wall interior (conduction)**
- **radiation**
- **convection**

\(\Delta H_{v,g} \) is the heat required to generate unit mass of volatiles at \(T_s \)

\(G \) is the irradiation from radiant panel, flame, etc
\[\dot{\omega}_g'' = \rho^0_{vs} x_{vs} A \exp(-E / RT_s) \]

\[\rho_s = \rho^0_{vs} x_{vs} + \rho^0_c (1 - x_{vs}) \]

\[\eta_c = \left(\frac{\rho^0_c}{\rho^0_{vs}} \right) \]
Pyrolysis modeling: description of fuel mass loss rate

- Finite-rate chemistry model: explicit treatment of thermal decomposition chemistry
- Thermal degradation across flammable solid described by a local one-dimensional problem in the direction normal to the exposed solid surface

\[
\text{virgin solid} \rightarrow \text{volatiles} + \text{char}
\]

\[
\frac{\partial \rho_s}{\partial t} = -\dot{\omega}_g'' \quad \text{mass conservation (solid phase)}
\]

\[
\frac{\partial \rho_g}{\partial t} + \frac{\partial m_g''}{\partial x} = \dot{\omega}_g'' \quad \text{mass conservation (gas phase)}
\]

Fire Modeling (LES)
• **Pyrolysis modeling**: description of fuel mass loss rate
 - Finite-rate chemistry model: explicit treatment of thermal decomposition chemistry
 - Thermal degradation across flammable solid described by a local one-dimensional problem in the direction normal to the exposed solid surface
• Fuel mass loss rate

\[
\dot{\omega}_g(x,t) = \rho_{vs}^0 x_{vs}(x,t) A \exp(-E / RT_s(x,t))
\]

\[
\dot{m}_f(t) = \int_{-\Delta}^{0} \dot{\omega}_g(x,t) dx
\]
• **Pyrolysis modeling**: description of fuel mass loss rate
 - Finite-rate chemistry model: explicit treatment of thermal decomposition chemistry

\[
\begin{align*}
 k^0_{vs} &= k^0_c = 0.126 \text{ W/m} \cdot \text{K} \\
 \rho^0_{vs} &= 663 \text{ kg/m}^3 \\
 \rho^0_c &= 133 \text{ kg/m}^3 \\
 c^0_{vs} &= c^0_c = 2520 \text{ J/kg} \cdot \text{K} \\
 \varepsilon &= 0.9 \\
 A &= 5.250 \times 10^7 \text{ 1/s} \\
 E &= 1.256 \times 10^5 \text{ J/mol} \\
 \Delta H_{v.g} &= 0 \text{ J/kg}
\end{align*}
\]
Pyrolysis modeling: description of fuel mass loss rate

- Finite-rate chemistry model: explicit treatment of thermal decomposition chemistry
- Example: particle board (Novozhilov, Moghtaderi, Fletcher & Kent, Fire Safety J. 27 (1996) 69-84)

\[
k^0_{\text{vs}} = k^0_c = 0.126 \text{ W/m} - \text{K}
\]
\[
\rho^0_{\text{vs}} = 663 \text{ kg/m}^3
\]
\[
\rho^0_c = 133 \text{ kg/m}^3
\]
\[
c^0_{\text{vs}} = c^0_c = 2520 \text{ J/kg} - \text{K}
\]
\[
\varepsilon = 0.9
\]
\[
A = 5.250 \times 10^7 \text{ 1/s}
\]
\[
E = 1.256 \times 10^5 \text{ J/mol}
\]
\[
\Delta H_{v,g} = 0 \text{ J/kg}
\]
Pyrolysis modeling: description of fuel mass loss rate

- Finite-rate chemistry model: explicit treatment of thermal decomposition chemistry
- Unknown parameters: $k_v^0, k_c^0, \rho_v^0, \rho_c^0, c_v^0, c_c^0, \varepsilon_v, \varepsilon_c, A, E, \Delta H_{v,g}$
- Unknown parameters determined by comparison between model predictions and cone calorimeter tests (benchmark quasi-1D tests with controlled irradiation levels and measured fuel mass loss rates) using advanced optimization techniques to minimize the discrepancies
• **Soot modeling**: description of soot emissions
 - Soot emission: leakage of soot particles from the underfire region to the overfire region (across the flame) without oxidation
Soot modeling: description of soot emissions

- Smoke point (SP): critical flame length in a laminar jet diffusion flame configuration above which the flame experiences a transition from sooting to smoking conditions.

Fire Modeling (LES)

- Sooting flame
- Soot region
- Soot growth
- Soot inception
- Formation of soot precursors
- Soot oxidation
- Soot emission
- Sooting and smoking flame
Fire Modeling (LES)

- **Soot modeling:** description of soot emissions
 - Phenomenological approaches (Moss et al., Lindstedt et al.)
 - Two-variable model; empirical description of fundamental soot formation processes (nucleation, surface growth, coagulation, oxidation)
 - Model parameters are fuel-dependent
 - No PAH chemistry
 - Monodispersed soot particle size distribution

\[
\frac{\partial}{\partial t} \left(\rho Y_{soot} \right) + \frac{\partial}{\partial x_i} \left(\rho u_i Y_{soot} \right) = - \frac{\partial}{\partial x_i} \left(\rho Y_{soot} V_{t,i} \right) + \frac{\partial}{\partial x_j} \left(\frac{\mu}{S_c} \frac{\partial Y_{soot}}{\partial x_j} \right) + \dot{\omega}_{s,\text{nucleation}}^m + \dot{\omega}_{s,\text{surface growth}}^m - \dot{\omega}_{s,\text{oxidation}}^m
\]

\[
\frac{\partial}{\partial t} \left(\frac{n_{soot}}{N_A} \right) + \frac{\partial}{\partial x_i} \left(u_i \frac{n_{soot}}{N_A} \right) = - \frac{\partial}{\partial x_i} \left(\frac{n_{soot}}{N_A} V_{t,i} \right) + \frac{\partial}{\partial x_j} \left(\frac{\mu}{\rho S c} \frac{\partial \left(\frac{n_{soot}}{N_A} \right)}{\partial x_j} \right) + \dot{\omega}_{n,\text{nucleation}}^m - \dot{\omega}_{n,\text{coagulation}}^m
\]
Soot modeling: description of soot emissions

- Direct numerical simulations (Narayanan, Lecoustre & Trouvé)
 - Flame structure: spatial distribution of soot mass fraction in non-smoking (top) and smoking flames (bottom)
Fire Modeling (LES)

- **Thermal radiation modeling**: description of radiant emissions
 - Thermal radiation transport generally dominates the gas-to-fuel-source thermal feedback; soot particles contribute to and often dominate the fire radiation properties
 - Radiation transport calculated via solving the radiative transfer equation (RTE)
 - Assumptions
 - Non-scattering medium
 - Spectrally-averaged (gray medium) or spectrally-resolved radiation properties
 - Planck mean absorption coefficient function of CO_2, H_2O and soot
Thermal radiation modeling: description of radiant emissions

- Radiation transport calculated via solving the RTE
 - Use radiation intensity \([W/m^2]\) as principal variable
 \[I((x,y,z), \mathbf{s})\]
 - Radiative heating/cooling rate \([W/m^3]\)
 \[\dot{q}_{rad}'' = \nabla \cdot \mathbf{q}_R(x, y, z) = \int \nabla I \cdot \mathbf{s} \, d\Omega = \int \frac{dI}{ds} \, d\Omega\]
 - Radiation heat flux vector at surfaces \([W/m^2]\)
 \[\mathbf{q}_R(x, y, z) = \int_{2\pi} I((x, y, z), \mathbf{s}) \mathbf{s} \, d\Omega\]
• **Thermal radiation modeling:** description of radiant emissions

 ➢ Radiation transport calculated via solving the RTE
 • Solution method: Discrete Transfer Method (DTM) or Discrete Ordinate Method (DOM)

 \[
 \frac{dI}{ds} = \kappa \left(\frac{\sigma T^4}{\pi} \right) - \kappa I
 \]

 Emission
 Absorption

 • Mean absorption coefficient [m\(^{-1}\)]
 \[
 \kappa = p(x_{H_2O}a_{H_2O} + x_{CO_2}a_{CO_2}) + \kappa_{soot}
 \]
• **Thermal radiation modeling:** description of radiant emissions
 - Radiation transport calculated via solving the RTE
 - Mean absorption coefficient [m⁻¹]
 \[\kappa = p(x_{H_2O}a_{H_2O} + x_{CO_2}a_{CO_2}) + \kappa_{soot} \]
 - \(a_{p,i} \) is the Planck mean absorption coefficient for species \(i \) [m⁻¹ atm⁻¹] and is obtained from tabulated data (TNF Workshop web site)
 - \(\kappa_{soot} \) is the soot mean absorption coefficient [m⁻¹]
 \[\kappa_{soot} = C_{soot} \times f_v T = C_{soot} \times (\rho Y_{soot} / \rho_{soot}) T \]
• **Thermal radiation modeling:** radiation-turbulence interactions (RTI)

 - Radiation transport calculated via solving the RTE

 \[
 \frac{dI}{ds} = \kappa \left(\frac{\sigma T^4}{\pi} \right) - \kappa I
 \]

 \[
 \nabla \cdot \mathbf{q}_R(x, y, z) = \int \nabla I \cdot \mathbf{s} \quad d\Omega = \int \frac{dI}{ds} \quad d\Omega
 \]

 - Mean radiative heating/cooling rate [W/m³]

 \[
 \bar{q}''_{rad} = 4\kappa (\sigma T^4) - \int_{4\pi} \kappa I \quad d\Omega
 \]

 \[
 \text{nonlinear term cannot be approximated by} \quad [4\kappa (\sigma T^4) - \int_{4\pi} \kappa I \quad d\Omega]
 \]
Fire Modeling (LES)

- **Thermal radiation modeling**: description of radiant emissions
 - *Challenges*
 - **Radiation blockage from fuel vapors**: current databases for radiation properties are limited to a small number of chemical species; fuel vapors are often treated as CH_4
 - **Turbulence-radiation interactions**: current fire models typically neglect the effects of subgrid-scale fluctuations
 - **Soot modeling**
 - Soot formation/oxidation involve complex processes that are far from being fully understood
 - Fundamental approaches (based on descriptions of soot precursors, soot formation and oxidation mechanisms, soot particle-size distribution) are not ready to provide engineering-level CFD models
 - Need an intermediate semi-empirical approach (*e.g.*, using the smoke point concept)
CFD-Based Compartment Fire Modeling

- Outline
 - Overview of Compartment Fire Dynamics
 - Overview of Fire Modeling
 - Examples of Compartment Fire Simulations
• Fire Dynamics Simulator (FDS)
 - CFD software developed by the Building and Fire Research Laboratory of the National Institute of Standards and Technology (NIST), USA
 - Domain of application: open/enclosure fire simulations (LES formulation; multi-physics: turbulent flow, mixing, combustion, thermal radiation, pyrolysis of liquid/solid fuel, liquid water sprinklers)
 - Limited to low Mach-number flows (no explosion)
 - Low-end engineering projects (ease-of-use, speed)
LES Simulations of Fires

- **Fire Dynamics Simulator (FDS)**
 - Software
 - Public domain (http://fire.nist.gov/fds)
 - Open source (Fortran 90)
 - Large user-group community (Google Code and Google Groups)
 - Parallel (MPI-based)
 - Numerical methods: finite difference scheme (2nd order in space); explicit time integration (2nd order in time); Cartesian grid; multi-block
 - Post-processing capability: Smokeview
LES Simulations of Fires

- **Fire Dynamics Simulator (FDS)**
 - *Example*: simulation of a full-scale test (Dalmarnock fire test, Glasgow, UK, 2006) (Lázaro et al., IAFSS, 2005)
LES Simulations of Fires

- **Fire Dynamics Simulator (FDS)**
 - *Example*: simulation of a full-scale test (Dalmarnock fire test, Glasgow, UK, 2006)

![Heat Release Rate vs time](image)

1. Pre-flashover stage ($t < 300$ s)
2. Flashover ($t = 300$ s)
3. First post-flashover stage ($300 < t < 780$ s) during which the fire size is approximately 3-4 MW
4. First window breakage in the fire room at time $t = 780$ s
5. Second post-flashover stage ($780 < t < 1000$ s) during which the fire size reaches 5-6 MW
6. Second window breakage in the fire room at time $t = 900$ s
7. Decay stage ($t \geq 1000$ s) during which the fire size is observed to decrease
LES Simulations of Fires

- **Fire Dynamics Simulator (FDS)**
 - *Example*: simulation of a full-scale test (Dalmarnock fire test, Glasgow, UK, 2006)

![Global Equivalence Ratio vs time](image)

Slide 77

(1) Fire becomes under-ventilated (GER ≥ 1) at flashover ($t \approx 300$ s)
(2) Quasi-stoichiometric conditions (GER ≈ 1) during the first post-flashover stage ($300 \leq t \leq 780$ s)
(3) First window breakage at $t = 780$ s results in a slight drop in GER followed by a sharp rise
(4) Fire remains in a transitional regime during the second post-flashover stage ($780 \leq t \leq 1000$ s) and the decay stage ($t \geq 1000$ s).
• Fire Dynamics Simulator (FDS)

 Example: simulation of a full-scale test (Dalmarnock fire test, Glasgow, UK, 2006)

\[t = 236 \text{ s} \]

\[t = 350 \text{ s} \]

\[t = 480 \text{ s} \]

\[t = 810 \text{ s} \]
LES Simulations of Fires

• FireFOAM
 - CFD software developed by FM Global, USA
 - OpenFOAM is a general-purpose advanced CFD solver developed by OpenCFD, UK (http://www.opencfd.co.uk)
 - Library of solvers: LES or RANS approaches for turbulence; low Mach number or compressible flow formulations (fire and explosions)
 - State-of-the-art physical models for LES, turbulent combustion, heat transfer (high-end engineering and research projects)
 - Advanced meshing capabilities: structured or unstructured (polyhedral mesh) computational grid (built-in mesh generation capability)
 - Large user-group community (OpenFOAM)
LES Simulations of Fires

- **FireFOAM**
 - Software
 - Open source (object-oriented C++ environment)
 - Linux OS
 - Massively parallel (MPI-based)
 - Formulation: LES, compressible flow
 - Numerical methods: finite volume scheme (2nd order in space); implicit time integration (2nd order in time); structured or unstructured (polyhedral) grid
 - Post-processing capability: third-party visualization with ParaView (open source)
LES Simulations of Fires

- **FireFOAM**
 - Validation test
 - McCaffrey, 1979
 - 30 cm × 30 cm square burner
 - 5 methane flames (scaling)

<table>
<thead>
<tr>
<th>Q [kW]</th>
<th>14</th>
<th>22</th>
<th>23</th>
<th>45</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q^*</td>
<td>0.19</td>
<td>0.29</td>
<td>0.44</td>
<td>0.60</td>
<td>0.77</td>
</tr>
</tbody>
</table>

$$
\dot{Q}^* = \frac{\dot{Q}}{\rho_\infty c_p T_\infty \sqrt{gDD^2}}
$$

Slide 81
LES Simulations of Fires

- **FireFOAM**
 - **Mesh**
 - 389k unstructured mesh
 - 24 cells across burner
 - Domain: 3 m × 3 m × 3 m
 - Average time: 13 seconds
LES Simulations of Fires

- FireFOAM
 - Flame height

![Diagram showing flame height vs. HRR with various simulations and equations: $0.2Q^{2/5}$ and $0.08Q^{2/5}$]
LES Simulations of Fires

- **FireFOAM**
 - Time-averaged centerline temperature
LES Simulations of Fires

- **FireFOAM**

 - Time-averaged centerline vertical velocity

![Graph showing V/Q vs. Y/Q^(2/5) for different power inputs](Image)

- 14 kW
- 22 kW
- 33 kW
- 45 kW
- 58 kW
- McCaffrey
• FireFOAM
 ➢ Non-dimensional vertical mass flow rate (air entrainment)
LES Simulations of Fires

- **FireFOAM**
 - *Example*: simulation of fire spread in a benchmark parallel panel configuration (Krishnamoorthy *et al.*, *INTERFLAM*, 2010)
 - Validation test
 - Standard intermediate test for materials
 - Heat flux similar to conditions observed in large-scale fires
 - $0.6 \times 0.3 \times 2.4$ m3